Matrix method of solving linear equations of three variables

Learn the process of solving linear equations of three variables by matrix method  .Let us understand this method with the help of an example

Matrix method of solving linear equations of 3 variables

Matrix method of solving linear equations of three variables with the help of an example. 


The system of these equations can be transformed into Matrix form as 

AX =  B  ,  ⇒ X =   A-1 B   ->  (*)
Where A is matrix written from the coefficients of x, y and z when these equations are in symmetric form and B is the matrix written from constants from right hand sides in column form and X is matrix of all the variables in column form. 

In order to find the solution of set of these equations , first we have to find the inverse of matrix A if it exist then we can find the solution otherwise Matrix method fails to find the solution of the set of linear equations . 

Evaluation of Determinant 

|A|  = 1 (-9 - 27) -1(6 - 63) -1(6 + 21)
       =  -36 + 57 - 27
       = -63 + 57
        = -6
Since the determinant value is not equal to zero ,Therefore its inverse can be calculated.
And  formula for finding the inverse of matrix A is 



Where Adjoint A is the transpose of co factor matrix. And in order to find the co factor matrix of any matrix, we have to find co factors of all the elements present in that matrix. 

How to calculate  co factors of all the elements of the matrix A. 



 Let us calculate these cofactors. 

Co factors of 1st row are  -36 , 57 , 27
Co factors of 2nd row are  -6, 10 , 4
Co factors of 3rd row are  6 . -11 , -5
Now these co factors can be written in matrix form known as co factor Matrix. 

Co factor Matrix


Writing co factors of 1st row in 1st row of this matrix , co factors of 2nd row in 2nd row of this matrix . Similarly co factors of 3rd row in 3rd row of this matrix . 

Adjoint  Matrix

To find the Ad joint of this matrix we have to take it's transpose, Because transpose of any matrix is called Ad joint of the matrix. So writing all the elements which are in 1st row in 1st column, and  all the elements which are in 2nd row in 2nd column and  all the elements which are in 3rd row in 3rd column. 

Now we can find inverse of the matrix A by putting the value of inverse of A in equation  (4), we get

Now  putting the values  Matrix B and    A-1  in (4) 

After simplification and using the properties of equality of two matrices  ( Two matrices of same order are equal if and only if their respective elements are equal to each other ) 
  x = -54/-6 = 9
 y =  12/-6 = 2
 z  = -24/-6  = -4
Hence
 x = 9 
 y = 2
 z = -4
So this was the Matrix method of solving linear equations of three variables using inverse of matrix. Your valuables comments will be appreciated for betterment of this blog.
Also read this post for understanding inverse of matrix using elementary row transformation
 
Share:

No comments:

Post a Comment

Your valuable suggestions are always acceptable to us for betterment of this website